Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 21699, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522457

RESUMO

Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.


Assuntos
Hipóxia , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Celular , Concentração de Íons de Hidrogênio
3.
Front Cell Neurosci ; 15: 686722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248504

RESUMO

Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.

4.
J Proteome Res ; 20(5): 2506-2520, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33793244

RESUMO

Axons are complex subcellular compartments that are extremely long in relation to cell bodies, especially in peripheral nerves. Many processes are required and regulated during axon injury, including anterograde and retrograde transport, glia-to-axon macromolecular transfer, and local axonal protein synthesis. Many in vitro omics approaches have been used to gain insight into these processes, but few have been applied in vivo. Here we adapted the osmotic ex vivo axoplasm isolation method and analyzed the adult rat sciatic-nerve-extruded axoplasm by label-free quantitative proteomics before and after injury. 2087 proteins groups were detected in the axoplasm, revealing translation machinery and microtubule-associated proteins as the most overrepresented biological processes. Ribosomal proteins (73) were detected in the uninjured axoplasm and increased their levels after injury but not within whole sciatic nerves. Meta-analysis showed that detected ribosomal proteins were present in in vitro axonal proteomes. Because local protein synthesis is important for protein localization, we were interested in detecting the most abundant newly synthesized axonal proteins in vivo. With an MS/MS-BONCAT approach, we detected 42 newly synthesized protein groups. Overall, our work indicates that proteomics profiling is useful for local axonal interrogation and suggests that ribosomal proteins may play an important role, especially during injury.


Assuntos
Proteoma , Proteínas Ribossômicas , Animais , Axônios , Proteoma/genética , Ratos , Proteínas Ribossômicas/genética , Nervo Isquiático , Espectrometria de Massas em Tandem
5.
RNA ; 26(11): 1637-1653, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747606

RESUMO

Programmed cell death 4 (PDCD4) protein is a tumor suppressor that inhibits translation through the mTOR-dependent initiation factor EIF4A, but its functional role and mRNA targets in neurons remain largely unknown. Our work identified that PDCD4 is highly expressed in axons and dendrites of CNS and PNS neurons. Using loss- and gain-of-function experiments in cortical and dorsal root ganglia primary neurons, we demonstrated the capacity of PDCD4 to negatively control axonal growth. To explore PDCD4 transcriptome and translatome targets, we used Ribo-seq and uncovered a list of potential targets with known functions as axon/neurite outgrowth regulators. In addition, we observed that PDCD4 can be locally synthesized in adult axons in vivo, and its levels decrease at the site of peripheral nerve injury and before nerve regeneration. Overall, our findings demonstrate that PDCD4 can act as a new regulator of axonal growth via the selective control of translation, providing a target mechanism for axon regeneration and neuronal plasticity processes in neurons.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Dendritos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mutação com Perda de Função , Masculino , Camundongos , Células PC12 , Cultura Primária de Células , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Ratos , Regulação para Cima
6.
PLoS One ; 15(5): e0233651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469980

RESUMO

Transference of RNAs and ribosomes from Schwann cell-to-axon was demonstrated in normal and regenerating peripheral nerves. Previously, we have shown that RNAs transfer is dependent on F-actin cytoskeleton and Myosin Va. Here, we explored the contribution of microtubules to newly synthesized RNAs transport from Schwann cell nuclei up to nodal microvilli in sciatic nerves. Results using immunohistochemistry and quantitative confocal FRET analysis indicate that Schwann cell-derived RNAs co-localize with microtubules in Schwann cell cytoplasm. Additionally, transport of Schwann cell-derived RNAs is nocodazole and colchicine sensitive demonstrating its dependence on microtubule network integrity. Moreover, mRNAs codifying neuron-specific proteins are among Schwann cell newly synthesized RNAs population, and some of them are associated with KIF1B and KIF5B microtubules-based motors.


Assuntos
Axônios/metabolismo , Microtúbulos/metabolismo , RNA/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Animais , Masculino , Bainha de Mielina/metabolismo , Regeneração Nervosa , RNA/análise , Transporte de RNA , Ratos , Ratos Sprague-Dawley
7.
J Cell Physiol ; 234(10): 16671-16678, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912143

RESUMO

Early stages in tumor development involve growth in confined spaces, where oxygen diffusion is limited and metabolic waste products accumulate. This hostile microenvironment imposes strong selective pressures on tumor cells, leading eventually to the survival and expansion of aggressive subclones that condition further tumor evolution. To model features of this microenvironment in vitro, a diffusional barrier can be introduced in the form of a coverslip placed on top of cells, a method termed coverslip hypoxia. Using a variant of this method, with larger volume between coverslip and cells and with oxygen diffusion occurring only through a small hole in the center of the coverslip, we have visualized alterations in LNCaP tumor cells as a function of their distance to the oxygen source at the center. We observed remarkable morphological changes in LNCaP cells as the distance from the center increases, with cells becoming highly spread, displaying dynamic membrane protrusions and occasionally adopting a migratory phenotype. Concomitantly, cells farther from the center displayed marked increases in the hypoxia marker hypoxyprobe, whereas extracellular pH decreased in the same direction. Cells with altered morphology displayed prominent increases in fibrillar actin, as well as swollen mitochondria with distorted cristae and accumulation of neutral lipid-containing intracellular vesicles. These results show that an in vitro microenvironment that models diffusional barriers encountered by tumors in situ can have profound effects on tumor cells. The coverslip hypoxia variant we describe can be used to characterize in vitro the response of tumor cells to environmental conditions that play crucial roles in early tumor development.


Assuntos
Hipóxia Celular , Oxigênio , Neoplasias da Próstata , Microambiente Tumoral , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Masculino
8.
Biochem Biophys Res Commun ; 498(3): 680-685, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29530529

RESUMO

Cell migration involves the precise coordination between extension at the front of the cell and retraction at the rear. This coordination is particularly evident in fast moving cells such as fish keratocytes, where it leads to highly stable gliding motion, propelled at the front by broad, 0.1-0-2 µm thick lamellipodia. Transient uncoupling between extension and retraction can occur if the rear is temporarily stuck, which might eventually lead to cell shape instabilities. We have frequently observed in fish keratocytes the presence of lamellipodial radial wrinkles, detected by confocal, scanning electron and side-view microscopy as folds in the lamellipodium up to 2 µm in height. Using a linear finite elements analysis, we simulated the displacement of cells either with perfect coordination between extension and retraction or with the rear transiently stuck while the front continues extending, and we observed that in this last condition compression stresses arise in the lamellipodium which predict the formation of the observed pattern of lamellipodial wrinkles. In support of the numerical modeling findings, we observed that the transient halting of retraction at the rear using micromanipulation induced the formation of lamellipodial wrinkles in previously flat lamellipodia. The obtained results suggest that the conspicuous lamellipodial wrinkles observed in migrating fish keratocytes are the product of transient imbalances between front and rear displacements, and are therefore useful markers of the short scale dynamics of extension and retraction coordination during cell migration.


Assuntos
Movimento Celular , Queratinócitos/citologia , Pseudópodes/ultraestrutura , Animais , Células Cultivadas , Simulação por Computador , Análise de Elementos Finitos , Carpa Dourada/metabolismo , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Microscopia Confocal , Modelos Biológicos , Pseudópodes/metabolismo
9.
Front Cell Dev Biol ; 5: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243589

RESUMO

In the protozoan parasite Trypanosoma cruzi, as in other trypanosomatids, transcription of protein coding genes occurs in a constitutive fashion, producing large polycistronic transcription units. These units are composed of non-functionally related genes which are pervasively processed to yield each mRNA. Therefore, post-transcriptional processes are crucial to regulate gene expression. Considering that nuclear compartmentalization could contribute to gene expression regulation, we comparatively studied the nuclear, cytoplasmic and whole cell transcriptomes of the non-infective epimastigote stage of T. cruzi, using RNA-Seq. We found that the cytoplasmic transcriptome tightly correlates with the whole cell transcriptome and both equally correlate with the proteome. Nonetheless, 1,200 transcripts showed differential abundance between the nuclear and cytoplasmic fractions. For the genes with transcript content augmented in the nucleus, significant structural and compositional differences were found. The analysis of the reported epimastigote translatome and proteome, revealed scarce ribosome footprints and encoded proteins for them. Ontology analyses unveiled that many of these genes are distinctive of other parasite life-cycle stages. Finally, the relocalization of transcript abundance in the metacyclic trypomastigote infective stage was confirmed for specific genes. While gene expression is strongly dependent on transcript steady-state level, we here highlight the importance of the distribution of transcripts abundance between compartments in T. cruzi. Particularly, we show that nuclear compartmentation is playing an active role in the developmental stage determination preventing off-stage expression.

10.
Methods ; 66(2): 153-61, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23791767

RESUMO

Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail.


Assuntos
Axônios/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Imuno-Histoquímica , Microscopia Confocal , Nervos Periféricos/citologia , Nervos Periféricos/metabolismo , Transporte de RNA , Ratos , Células de Schwann/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...